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Motivation The Strong Force
C

The Forces of Nature

Four known forces: gravitational, electromagnetic, weak, strong
@ The gravitational force is always attractive
@ The electromagnetic force can be attractive or repulsive
@ The weak force is responsible for neutrino interaction
Q
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Motivation

The Forces of Nature

Four known forces: gravitational, electromagnetic, weak, strong
@ The gravitational force is always attractive
@ The electromagnetic force can be attractive or repulsive
@ The weak force is responsible for neutrino interaction

@ The strong force is either attractive or repulsive depending on the
range of the particles (quarks)

To complicate matters, the particles that interact via the strong force are
only found in specific combinations and are never isolated
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Motivation

Baryons and the Cascades

Quarks spin=1/2
Flavor AI;\)II%TSXI em
GeV/c2 charge
U up 0.003 2/3
d down 0.006 | -1/3
C charm s 2/3
S strange 0.1 -1/3
t top 175 2/3
b bottom 4.3 -1/3

@ The strong force is what binds
the three quarks inside the
proton

@ There are six flavors of quarks

@ This study involves only the
lightest three

= States are identified by the

quantum numbers:

9 Baryon =1
@ Strangeness = —2

e Qe {-1,0}

UCLA  Jefferson Lab,

s Jeffersan National Accelerator Facilty

J. Goetz Cascade Photoproduction PhD Defense



Motivation

Baryons and the Cascades

The S

Cascades
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In order to study the strong interaction, we look at qqq systems with two
strange quarks. They are narrow and SU(3) symmetry suggests a 1:1

correspondence between the Xi spectrum and N/A's
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Motivation The St
Cascades
Photop

Previous Investigations

virtually all evidence for =* states come from measuring the decay
particles directly in hadron-production experiments such as:

e K-p— =K+
e Y p— =ZpK™*
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Motivation

Previous Investigations

virtually all evidence for =* states come from measuring the decay
particles directly in hadron-production experiments such as:

e K-p— =K+
e Y p— =ZpK™*

photoproduction provides another way to measure the cascades:

vp — = KTK™
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Motivation

Photoproduction of ='s

Allows the cascade to be identified by the photon and two K*'s J

There are a few requirements to
this avenue of investigation

@ photon (beam) energy v K
measurement %
o four-momenta of the two K*'s K LK
@ sufficient acceptance for the /:':
kaons o k \ =

@ understanding of sources of
background
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Motivation

Photoproduction of ='s

Allows the cascade to be identified by the photon and two K*'s J

There are a few requirements to
this avenue of investigation

@ photon (beam) energy v K
measurement %
o four-momenta of the two K*'s K LK
@ sufficient acceptance for the /:':
kaons o k \ =

@ understanding of sources of
background

The CLAS detector at JLab satisfies these requirements
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The CLAS Detector
g12 Data and Reconstruction

The g12 Experiment

The CLAS Detector

JLab from the air
The CLAS Detector (upstream)

»~
Iy e

UCLA  Jefferfon Lab

s Jeffersan National Accelerator Facilty

J. Goetz Cascade Photoproduction PhD Defense



The CLAS Detector
gl2 Data and Reconstruction

The g12 Experiment

The CLAS Detector Components

Jefferson Lab
CLAS Detector

six sectors — three ‘planes’

radiator & electron tagger

£H, or ¢D, target (others are possible)
start counter (scintillator)

magnets (toroidal)

drift chambers (3x per sector)
Cerenkov Detectors

Time of Flight Detectors ;
UCLA Jefferdon Lab
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The C

19 Exoeri € tor
The g12 Experiment g12 Data and Reconstruction

g12 Acquired Statistics

Commissioning and Data taken over 70 calendar days
April 1™ — June 9t 2008

Production Data

44.2 days active DAQ Size of Raw Data: 126 TB
~63% of calendar time

Beam Current: 65 nA

DAQ rate ~8 kHz

26.2 G triggers (events)
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The C

19 Exoeri € tor
The g12 Experiment g12 Data and Reconstruction

g12 Acquired Statistics

Commissioning and Data taken over 70 calendar days
April 1™ — June 9t 2008

Production Data

442 days active DAQ Size of Raw Data: 126 TB
~63% of calendar time _ .
Beam Current: 65 nA Reconstruction Expands this by a
DAQ rate ~8 kHz factor of 2.5

26.2 G triggers (events)

“cooked” data > 300 TB
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The g12 Experiment

Calibration and Reconstruction

Primary Calibrators Calibration of the g12 data took

® C. Bookwalter, FSU (TOF) this team a year and three months./
@ P. Eugenio, PhD., FSU (coord)

A. Vlassov, PhD., JLab (CC)
D. Weygand, PhD., JLab (coord)
M. Wood, PhD., Canisius (EC)

decades by approx. two dozen people

using a mix of FORTRAN, C, C++, and

@/ . Goetz, UCLA (recons.) @ My specific role was to ensure
oL PhD., FI d .
Guo, + FIU (coord) the reconstruction of tracks
@ V. Kubarovsky, PhD., JLab (coord) (four-vectors) .
@ M. Paolone, PhD., USC (EC, CC) d d I d
@ J. Price, PhD., CSUDH (coord) 262 Wk Ees erEedy &
@ M. Saini, FSU (RF, ST, TAG) efficiently
@ D. Schott, FIU (DC) @ This involved debugging several
@ B. Stokes, PhD., GWU (DC) programs which were developed over two
°
°
°

various scripting languages

v
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The g12 Experiment

Reconstruction - Algorithm

oL or
Data and Reconstruction

Raw TDC Data Raw or Calculated Data
all subsystems
Calibration Data

/ Calculation

iming and
TDC Calibration <—— &ie Wlk
COH‘EC[IB,\}SD -

Ray, suhsyslems

ali = suhsystems
simulated tracks)
(C'priink" file)

Drift-Chamber’
raw TDC hits ADC Calibration RF Clock

Corrections
/ onsl TAG TDC data

Hit-Based Hit Times
Tracking € {_allsubsystems

56.7%

RF Correction
Magnetic ——
Field Map
-Based Tre
T thf“ TAG Times

Tlme Based
Trackmg

1'2)(
\ Particle D — .« Tparies

Time-Based T‘rack.l ~15% (Tracks and 1D)

| developed this flowchart of
the reconstruction algorithm

and the corresponding expansions for

tracking in the dissertation

There have been other
studies of the reconstruction
algorithm used by CLAS,
but this is the first | know
of that obtained the relative
processing time for each
step.
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. oL or
12 Ex
The gl2 Bxperiment Data and Reconstruction

Reconstruction - Timeline

The reconstruction of raw data to an analysis-ready “cooked” version
took four months using the computing farm at JLab.

900
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- —. A .
£ i N // \\// Voo 2 . .
g0k a NN \,4\ /’ I @ Sept: higher priority
2 N ~ {500 2 .
2 30k [0 / \'<\~/ V. . @ Oct: increased cache
S Ja00 &
2 ~ . <
2 / [ N~/ Yoo o & @ Nov & Dec: more
Z 20k [ A 3
/ \\ | N, Ha00 ™ CPUs
.
10k [ // / ~. q100
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19 Experi ectol
The gl2 Bxperiment ata and Reconstruction

Analysis Framework

The single-kaon skim we initially made on the data consisted of 30% of
the cooked data (about 100 TB)

This made it very difficult to read through quickly.

| developed my own variably-sized
ntuple using the Serialization
library from the BOOST project in
C++
@ this effectively converted the
cooked data to zipped ASCII
files

9 resulting single kaon data
(from 90 TB) was 1.6 TB
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The C

19 Exoeri € tor
The g12 Experiment g12 Data and Reconstruction

Analysis Framework

The single-kaon skim we initially made on the data consisted of 30% of
the cooked data (about 100 TB)

This made it very difficult to read through quickly.

| developed my own variably-sized

ntuple using the Serialization
The 1.6 TB can be analyzed in

about 1.5 days using our own farm
(next door)

library from the BOOST project in
C++

@ this effectively converted the
cooked data to zipped ASCII
files

9 resulting single kaon data
(from 90 TB) was 1.6 TB
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The C

19 Exoeri € tor
The g12 Experiment g12 Data and Reconstruction

Analysis Framework

The single-kaon skim we initially made on the data consisted of 30% of

the cooked data (about 100 TB)

This made it very difficult to read through quickly.

| developed my own variably-sized
ntuple using the Serialization

library from the BOOST project in
C++

@ this effectively converted the
cooked data to zipped ASCII
files

9 resulting single kaon data
(from 90 TB) was 1.6 TB

From this ntuple, | produced all the
original histograms shown in the
dissertation. Some images were
produced with ROOT and others
with the Scientific Python (SciPy)
and “Matplotlib” packages.
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Missing Mass Technique
M ff KT K
g12 Kaon Data

Missing Mass Technique

vp — KTKT X~

@ since we wish to use the missing mass technique, we must first
determine its accuracy by looking at known states.

@ For kaon data, we will start with singly strange baryons (X's and A's)
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Technique
Sff KT K

g12 Kaon Data ound

Missing Mass Technique

vp — KTKT X~

@ since we wish to use the missing mass technique, we must first
determine its accuracy by looking at known states.

@ For kaon data, we will start with singly strange baryons (X's and A's)

9 Note that these data were calibrated mostly with exclusive pion
events: yp — pm T
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g12 Kaon Data

vp — KT X0
Measured Masses (MeV)
® A=1109.40.25 35000~ Entries 706992
PDG = 1116 3
0 Y0 =1186.6+ 0.4 ok
PDG = 1192 ok
o ¥*0=1385+7 o
PDG — 1384 s
PDG: A*(1405) s
e ok 11‘5‘22‘5 3
PDG = 1520 ) MM(K ;) (GeV)
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hnique
KTK
g12 Kaon Data Sources of Ba d

Yp — @X*
(p - KTK™)
SOOOOi Entries 813574
40000;
30000; 9 @ =1019.5+0.2
: PDG = 1019
zoooo:—
10000;
o: | P P [ L

18 2
M(K'K) (GeV)

UCLA Jefferdon Lab

3THomas Jefferson National Accelerator Facilty

J. Goetz Cascade Photoproduction PhD Defense



Missing Mass Technique
off KT K

g12 Kaon Data

o AN=1113.2+05

PDG = 1116
@ =0=1313.84+04
PDG = 1315

Yp — KTK+n—X°

1000 Entries 15531

800

600

400

200

P O T N .
02 04 06 08 1 12 14 6 . 18
y MM(K K *1t) (GeV)

z

o
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Missing Mass Technique

KTK

o A=11132+£05 g :
PDG = 1116 %
0 =0=1313.8+£04 % af

PDG = 1315
@ secondary peaks from
misidentified pions and
where the ™ is
associated with the
decay of the X°

Entries 155313 |

TUSTRITIL [INEITSRTS| ITRRTIUIN TR

04 06 08 1 12 14 16 18
MM(K'K'm) (GeV,
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Missing Mass Technique
KTK

vp — KOKTrn— X
(KO — stm)

35[:0; Entries 377437 op= 03741

3000% PDG — 938

o o ¥t =1186.8+138

2000 PDG = 1189

0 @ secondary peaks will be

1000~ revisited in the search

5001 of iso-exotics )
00:‘ 0.2 i ‘O.‘AI ‘ ‘D.‘G‘ ' ‘D.‘S‘ - i - ‘1.‘2‘ ‘ ‘1.‘4‘ ' ‘1.‘6‘ ‘ I1.8‘ 2

MM(K 't'7T) (GeV)
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Mlsslng Mass off K
g12 Kaon Data Sources of Background

vp — KTKT X~
@ basic timing and vertex 6000;  Enies 740228 E
selections only F ]
@ =~ =1320.2+ 0.2 MeV o E
PDG = 1321.71 4+ 0.07 wo0a E
® =~ =1535.240.8 MeV 000 E
PDG = 1535.0 £ 0.6 2000~ E
1000 E
) B :

18 2 22 24
MM(KK*) (GeV)
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Mlsslng Mass ofF }\+ +
g12 Kaon Data Sour f Back d

vp — KTKT X~
@ basic timing and vertex ;E 7 Enis 740228 i
selections only ¥ E 500
o =~ =132024 0.2 MeV 2 b b
PDG = 1321.71 4+ 0.07
o =~ = 153524 0.8 MeV
PDG = 1535.0 + 0.6 P
@ misidentified pion events e e
show up as vertical bands 0_%; N R VU POV TR

MM(K'") (GeV)
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ss Technigue
Missing Mass ofF KTKT
g12 Kaon Data Sources of Ba ind

TOF Energy Deposit Cut

@ kaons identified from
(1020) and = (1320) e . I _
S|gna|s § = Entries  1.19877e+07
. 2 up
@ number of kaons, pions L2 ol ‘
and protons were E protons
- - n 10
normalized in this to E oo :
bring out the kaon e l
band sf
@ this cut was used as a 4F “
consistency check of 2 \g,.‘ :
the partIC|e ID WhICh 007‘ ‘ ‘O.‘Z 0.14. OG 0.8 1 ]:2 1.‘4 116 ]8 2
was based on timing momentum (GeV)
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ss Technique
Missing Mass ofF KTKT

Kaon Data Sources of Background

@ proton can be used to remove the X~ (1189) events:
vp — L Kta®
Y~ —nm (99.8%)
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v s Technigue
Mlsslng Mass off K I\+
g12 Kaon Data Sources of Background

Proton Cut

@ proton can be used to remove the X~ (1189) events:
vp — X Ktat
Y~ —nm (99.8%)
@ affects X~ events differently from =*~ events
since the ="~ 's are more likely to decay to a proton

UCLA Jeffegon Lab
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echnique

fF KT KT

g12 Kaon Data

Proton Cut

@ proton can be used to remove the X~ (1189) events:
vp — X Ktat
Y~ —nm (99.8%)
@ affects X~ events differently from =*~ events
since the ="~ 's are more likely to decay to a proton

@ Because the reductions in the = signals and the ¥*~ background are
different, this is a direct test of the measurements of the events in
the peaks
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g12 Kaon Data

Primary Event Selections

yp — KFKF X~

Event Selections

@ Basic Timing Cuts

" Entries 740228
6000)
5000
4000)
3000 E_(1320) 22690 + 250

2000

1000

= (1530): 4330 = 240

ST [ T[T T[T T T

18 2 22 24
MM(K *K*) (GeV) o’
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g12 Kaon Data

Primary Event Selections

yp — KFKF X~

Event Selections

30002 ' Enties 174350 7 @ Basic Timing Cuts
2500; 7 @ TOF Energy Dep.
zooo; é
1500 . =-(1320): 15190 + 150
1000t E 67% of basic cuts
son— : =—(1530): 3020 = 120

%AG‘ ‘ ‘0.8‘ - ‘1‘ ' ‘:‘l.é‘ ' i‘4‘ ' ‘l.‘ﬁ‘ ' ‘1‘.8‘ - ‘2‘ 2.2‘ - 24 70% Of baSiC CUts

MM(K *K*) (GeV)
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g12 Kaon Data

Primary Event Selections

vp — KTK+ X~

Event Selections

1200? | enves 76162 7 @ Basic Timing Cuts
1000; é

sooi E @ Proton

600:7 7: —_

g ] =7(1320): 7557 £ 125
o E 33% of basic cuts
200~ e =(1530): 1310+ 110

T R S ¥ R ¥ R v v S P R 31% of basic cuts
MM(K *K*) (GeV)
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g12 Kaon Data

Primary Event Selections

vp — KK+ X~

i | Enries 42295 | @ Basic Timing Cuts
mo? 7 @ TOF Energy Dep.
o B @ Proton
soo E

E ] =-(1320): 5025 =+ 85
400? 7 22% of basic cuts
N E =—(1530): 1073 + 66

T v I T 25% of basic cuts

8 2 22 2
MM(K *K*) (GeV)
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Technique
Sff KT K

g12 Kaon Data

Sources of Background

Two types of background sources in MM(K*TK™) distribution

—
- Competing Physics
@ misidentified particles (pions
are ID'd as kaons)
Y *~ states contributed
through this and is the largest

@ Possibility of many high-mass,
broad =*~ states

@ Y* pion emission (soft n°'s)

source of background in this @ neutral kaon channels such as:
analysis yp — Y*K*
Y* E*OK*O
@ wrong beam energy from the K0 s Kt
tagger o

UCLA  Jefferso
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Part |l

Results From gl2
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xcitation Functions

Calculation Technique

Excitation Function

The Excitation function is the absolute probability that a specific will be
produced at a certain center-of-mass energy

(we use Epeam since the proton is at rest)

Ingredients
Measured Yield (/)
Flux (F)

| \

Target Material (w, p, £)
Acceptance, (A)

w_ N
PN

g =

B
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xcitation Functions

Calculation Technique

Excitation Function

The Excitation function is the absolute probability that a specific will be
produced at a certain center-of-mass energy

(we use Epeam since the proton is at rest)

Ingredients

| \

Measured Yield (N) primary source of statistical error
Flux (F)

Target Material (w, p, £)
Acceptance, (A)

w_ N
PN

g =

B
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= Excitation Functions

Excitation Function

The Excitation function is the absolute probability that a specific will be
produced at a certain center-of-mass energy

(we use Epeam since the proton is at rest)

Ingredients

| \

Measured Yield (N) primary source of statistical error

Flux (F) a moderate source of systematic error, but the large
number of photons hitting the target means the statistical
error is at a minimum

Target Material (w, p, £)
Acceptance, (A)

w_ N
PN

g =

B

UCLA Jefferdon Lab
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xcitation Functions

tion Functions

Excitation Function

The Excitation function is the absolute probability that a specific will be
produced at a certain center-of-mass energy

(we use Epeam since the proton is at rest)

| \

Ingredients

Measured Yield (N) primary source of statistical error

Flux (F) a moderate source of systematic error, but the large
number of photons hitting the target means the statistical
error is at a minimum

Target Material (w, p, £) well known
Acceptance, (A)

w_ N

UNs A

g =

B
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xcitation Functions

tion Functions

Excitation Function

The Excitation function is the absolute probability that a specific will be
produced at a certain center-of-mass energy

(we use Epeam since the proton is at rest)

| \

Ingredients

Measured Yield (N) primary source of statistical error

Flux (F) a moderate source of systematic error, but the large
number of photons hitting the target means the statistical
error is at a minimum

Target Material (w, p, £) well known

Acceptance, (A) primary source of systematic error

w_ N

UNs A

g =

B
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= Excitation Functions

Calculation Technique
Simulations and Acceptance

elds and Excitation Functions

Model Dependence and Systematic Uncertainty

The model used to simulate = events is the largest source of systematic J

uncertainty.

@ The model used was a
t-channel production of a Y*
which then decayed by
phase-space to the =

@ The major parameters we
adjusted to get good
agreement with the kaon
distributions seen in the data
were:

o t-slope of the leading K+
® mass of the Y*

o width of the Y*

J. Goetz
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= Excitation Functions

The model used to simulate = events is the largest source of systematic
uncertainty.

@ The model used was a
t-channel production of a Y*
which then decayed by
phase-space to the =

>~
T
Qo
(=)
L

s »g:& 0Ooo'o ™

@ The major parameters we
adjusted to get good
agreement with the kaon
distributions seen in the data
were:

acceptance (%)

cﬂwuhm
:
&

o t-slope of the leading K+ o )
o mass of the Y* (Similarly for Y* mass and width)

o width of the Y* UCLA Jefferfon Lab

o Thomas Jefterson Nat tional Accelerator Facility
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citation Functions

ilation hnique

Simulations and Acceptance

s and Excitation Func

yp — E-(1320)K+K+

10 10 T T T 10
]
£ 8 8 1 st 1
6 6 1 6f 1
£ 1 4r 1 4f 1
£ 2 1 2f 1 2 g

i i i i 0 i i i 0 i i i i
%, 08 16 24 32 4.0 —0.8 0.0 0.8 0 1 2 3
—t (Kiiy) (GeV?) cos(flen. Kdiow) AP(KTKT)

10 T T T 10 T T T 10 T T
£ s 1 st 1 sf E
so6 1 of 1 6 1
£ 4 1 4r 1 4f 1
Z 2 1 2t 1 2 E
= it It It I It It L it It It It i

%. 08 16 24 32 4.0 %.O 0.8 1.6 2.4 3.2 %,0 08 1.6 24 32 4.0

st momentum (GeV) Kow momentum (GeV) K{y, momentum (GeV)

. 10 T T T T 10 T T T T 10 T T T T
E-JN] SR SR R ] e e G B feed
i . X : ; 4ok E : ; B ) : i
Eoapd : : 1 4 s : 1 4 = 1
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= Excitation Functions Calculation Technique

Simulations and Acceptance
=2 ds and Excitation Functions

Acceptance

The acceptance for the ground state and first excited =~ states. The
statistical error is within the size of the dots and the systematic error is
estimated to be ~ 10%

yp — =7 (1320)KTK* with proton
sk  FEEEts SRR RETEEEE BRI N 21 ‘ PR ‘ ]
7k . j a
. o#®C Tieitlgg 201
SKiE o< 7
gor . OOO‘OOOOOOO”: L5f
2 41 o - Qg i
! * o ©o0 i
S 31 . o il 1.0
g o
s o o ] 055 T basic cuts
© I basic and TOF E
0 o] el I I I I I 0.0 Lex I I I 1
2.5 3.0 3.5 4.0 4.5 5.0 5.5 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Epeam (GeV) Eheam (GeV)
=—(1320)
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= Excitation Functions

Calculation Technique
Slmulatlons and Acceptance
ds and Excitation Functions

Acceptance

The acceptance for the ground state and first excited =~ states. The
statistical error is within the size of the dots and the systematic error is
estimated to be ~ 10%

yp — =7 (1530)KTK* with proton

L i i T S e B X e e

61 )—H%
<3 1.5F e B - e
g af o © OQO olto o
g 1O -9 - .
&C?“S? o ©
]

D IPts L SITITISIETIRIOLE SRR SRR ‘
Cel ‘ ] S TSNS SNHIIRE SRS S

b e ] : : ; basic cuts
0 Blo : : ; 0.0 '—o—‘ 8 ‘ ‘ basic and TOF E
3.0 3.5 4 0 4 5 5.0 5.5 ' 3.0 3.5 4.0 .
Epeam (GeV) Fieam (GeV)
=~ (1530)
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= Excitation Functions " ~
atic chnique

s and Acceptance
= Yields and Excitation Functions

Extracting Yields from the Data

=7(1320) fit, full statistics
@ 3 order polynomial

@ Gaussian peak 2800
2600

Entries 542329

9 yield is the integral of the
histogram minus the integral
of the polynomial part of the
total fit.

2400
2200
2000

- 1800
1600
1400
1200
1000
800

600

1.25 13 1.35

NS A AL R LA B L B L B DL

-

14 1.4
MM(K K" (GeV)
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= Excitation Functions

d Acceptance
= Yields and Excitation Functions

Extracting Yields from the Data

=7(1320) fit, full statistics

@ 3 order polynomial
i 2800
O GaUSSIan peak F Entries 542329,
. . . 2600
9 yield is the integral of the g
. . . 2400~
histogram minus the integral s200k
of the polynomial part of the 2000k
total fit. i
v 1800
1600
@ There is a systematic 1400
uncertainty in this fit 12005
@ The shape of the background is not 1000
known, but only approximated by the 8000
low-order polynomial B
600 i b b b b |
@ The proton cut gives us a handle on the 1.2 1.25 1.3 1.35 1.4 1.4
systematics of this fit indirectly MM(K'K") (GeV)
(discussed later)

- UCLA Jefferlon Lab

3THomas Jefferson National Accelerator Facilty

J. Goetz Cascade Photoproduction PhD Defense



= Excitation Functions

= Measured Yields

measured yield of the ground state and first excited state =~

show

structures in acceptance and efficiency of the CLAS detector

vp — 27(1320)K K+

with proton

1600 600 T

Z ol o = — basic cuts : ;
< 1400 @,E&J + T = 500 m{ﬁ& ]
& 1200 b b B : : : ; :
- | R | T a0 FP’{"— -
z 1000 ] O{( ,}( 5
~ : ’} L =~ : i %&1 :
T s00f B R B=E e T T
e S A e F < oo P .
5 A0 9 | F ‘
17 . . 2 L. PR B
g ooof = | g0 - o
- O | = - Il Il Il Il Il - U | b= ?: Il Il Il Il Il

2.5 3.0 3.5 4.0 4.5 5.0 5.5 2.5 3.0 3.5 4.0 4.5 5.0 5.5

Epeam (GeV) Epeam (GeV)
=-(1320)

Notice: absence of events at 3 GeV due to bad

tagger timing paddle, increases at 3.6 and
4.4 GeV due to trigger configuration
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= Excitation Functions

Simulz a
= Yields and Excitation Functions

= Measured Yields

measured yield of the ground state and first excited state =~ show
structures in acceptance and efficiency of the CLAS detector

yp — E7(1530)KTK* with proton
500 T T T T 250
Z 400 Z 200
= K
g 300 g 150
= 200 =, 100
Z 100 - Z 50
- o= I I I I I = 0 e i I I I I
3.0 3.5 4.0 4.5 5.0 5.5 3.0 3.5 4.0 4.5 5.0 5.5
Epeam (GeV) Epeam (GeV)
=*(1530)
Notice: absence of events at 3 GeV due to bad
tagger timing paddle, increases at 3.6 and )
4.4 GeV due to trigger configuration UCLA Jefferdon Lab
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= Excitation Functions

Calculation Technique
Simulations ar eptance

= Yields and Excitation Functions

Correcting for the Flux

measured yield of the ground state and first excited state =~ show
structures in acceptance and efficiency of the CLAS detector

x 10

o ©

photons per 25 MeV

S B N W e o

3 4
Eheam (GeV)

Photon Flux
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= Excitation Functions

Simulz a
= Yields and Excitation Functions

Correcting for the Flux

measured yield of the ground state and first excited state =~ show
structures in acceptance and efficiency of the CLAS detector

yp — E7(1320)KTK™ with proton

500 Fr — e T T e
| | | | | 140 B F-}f - -l B
400} AL T +
= ){&( 2l Y )}‘H ’{1{1 |20 ! )-P R
2 T + +
< 3w S ] 00 g S TR T
g QO ft-eeee e HH = g
S 200 & G0k e T
k5] : : : : : : T
100 -: == y 10 : : : : : : :
i 20 [ gyt
0 - - Il Il Il Il Il 0 ] i Il Il Il Il Il
2.5 3.0 3.5 4.0 4.5 5.0 5.5 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Eheam (GeV) Epeam (GeV)
=-(1320)

This includes the target material corrections
and is the closest we can get to the final )
excitation function before we introduce any UCLA JefferZon Lab
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= Excitation Functions

Simulz a
= Yields and Excitation Functions

Correcting for the Flux

measured yield of the ground state and first excited state =~ show
structures in acceptance and efficiency of the CLAS detector

vp — = (1530)KTK* with proton
160 F T ——r—— = = A
140 |-
:.; 120 -
~— 100 |-
©
E 80
2 60f: T
<
~ a0t
20|
o= I I I I I 0 = | I I I I
3.0 3.5 4.0 4.5 5.0 5.5 3.0 3.5 4.0 4.5 5.0 5.5
Eheam (GeV) Epeam (GeV)
=+~ (1530)
This includes the target material corrections
and is the closest we can get to the final )
excitation function before we introduce any UCLA JefferZon Lab

OTHomas Jefferson National Accelerator Facility

model
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= Excitation Functions

= Excitation Functions

o (nb)

Simulz a
= Yields and Excitation Functions

Total cross section of yp — =~ KTK™

yp — = (1320)KTK* with proton
- . F-r4 10H — Dbasic cuts |- . i
L Lo R T T Lo ] e T -
- 4 6 T ';'L‘
-
- >-I-< 4 oabio B2 .
i H
- S Y S a
= +
=S I I I I I d gl I I I I I I
2.5 3.0 3.5 4.0 4.5 5.0 5.5 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Epeam (GeV) Epeam (GeV)
=-(1320)
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= Excitation Functions

Simulz a
= Yields and Excitation Functions

xcitation Functions

Total cross section of yp — =~ KTK™
yp — =7 (1530)KTK* with proton

Y a— I i R . basic cuts | @ .

: : : : : I TOF E : : : :

2% IS RN S A * SO 3 YISO s 0= = OO S0 AU |

= : : : : T 1T : ST T : —— :
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= Excitation Functions

ulll s and A ance
Yields and Excitation Functions

= Excitation Functions

yp — = KTKT
Total cross section

:
— basic cuts
0H — 1or e

I TOF E & prot T g i §

3 of rke i
© i
-

1t i 8

2 = l 1

=
ol i i i i i i
25 3.0 35 10 15 5.0 5.5

Ehcam (GeV)

=-(1320)
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= Excitation Functions

= Vields and Excit

= Excitation Functions

ptance
on Functions

o (ub)

yp — = KTKT
Total cross section

basic cuts
TOF E

proton
TOF B & prot

T - L —— "
—t—
| I

Ed I I
—_ »—1-—1

1 +j;:

b
== i i i i
3.0 3.5 4.0 4.5 5.0 5.5

Ehcam (GeV)

=+~ (1530)
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= Excitation Functions

Simulz a
= Yields and Excitation Functions

yp — = KTK™T
Total cross section

20 == T T T T T =
— 12
gl1
— W
15+ S
é 10+ 1 |
L ’—I—‘ +
EIE R P}%%%m
- —H+ 4~ =]
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xcitation Functions

= Yields and Excitation Functions

Comparison to Theoretical Work

vp — = KTK™*
Total cross section

= 7 ] 0
T E s _&:—’— e i _
(T F 2
e 5 i T I
17 L I: =
= 6f e A o 10
2 | Fl
L. L
1f - q
| _Pl | 003550 35 40 45 50
& T, (GeV)
0 2‘3 «5‘0 35‘5 X ‘5 5‘“ 5")
P @) K. Nakayama, Yongseok Oh

and H. Haberzettl

Overall scaling factor in prediction was adjusted to g1l data
(overlayed points on right)
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Search for Higher Mass =* Upper Limit Calculation Technique
Upper Limits

Sensitivity of Yield Measurement

@ Upper Limit Calculation same as that for Excitation Function
@ Differences:

yield sensitivity was defined as the two standard deviation of the error
from the yield measurement which was verified to be consistent with zero
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Search for Higher Mass =* Upper Limit Calculation Technique
Upper Limits

Sensitivity of Yield Measurement

@ Upper Limit Calculation same as that for Excitation Function
@ Differences:
@ Instead of yield, we have the sensitivity to measured yield

yield sensitivity was defined as the two standard deviation of the error
from the yield measurement which was verified to be consistent with zero
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Search for Higher Mass =* Upper Limit Calculation Technique
Upper Limits

Sensitivity of Yield Measurement

@ Upper Limit Calculation same as that for Excitation Function
@ Differences:

@ Instead of yield, we have the sensitivity to measured yield
o dependent on the width searched for (25-30 was used for the =*)

yield sensitivity was defined as the two standard deviation of the error
from the yield measurement which was verified to be consistent with zero
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Search for Higher Mass =* Upper Limit Calculation Technique
Upper Limits

Sensitivity of Yield Measurement

@ Upper Limit Calculation same as that for Excitation Function
@ Differences:

@ Instead of yield, we have the sensitivity to measured yield
o dependent on the width searched for (25-30 was used for the =*)
@ acceptance - similar to Xi(1530)

yield sensitivity was defined as the two standard deviation of the error
from the yield measurement which was verified to be consistent with zero
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Search for Higher Mass =* Upper Limit Calculation Technique
Upper Limits

Sensitivity of Yield Measurement

@ Upper Limit Calculation same as that for Excitation Function

@ Differences:
@ Instead of yield, we have the sensitivity to measured yield
o dependent on the width searched for (25-30 was used for the =*)

@ acceptance - similar to Xi(1530)
@ can't adjust simulation parameters to a signal since there is none!

yield sensitivity was defined as the two standard deviation of the error
from the yield measurement which was verified to be consistent with zero
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Search for Higher Mass =* Upper Limit Calculation Technique
Upper Limits

Missing Mass off K"K™ Revisited

The proton and the TOF energy deposit cuts were employed in obtaining
the upper limits for the =* states at 1620, 1690 and 1820 MeV

Entries 42299
1000

800

600

400

200

O T T T[T T T[T [T [ TTr 1

L
0.8 1 1.2 1.4 1.6

. 2 22 24
MM(K *K*) (GeV)
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Search for Higher Mass =* Upper Limit Calculation Technique
Upper Limits

=* Upper Limits

Total cross section upper limits for the =* states at:

70
g . 50
2%°
= =
=240
5
=% 30
o~ o
2:14
22
Z
£ 10

1620, 1690 and 1820 MeV

60

T e e e
—o— 1820 |: : o

o 1690 |1 ]
; ; ; ; ;
3.5 4.0 4.5 5.0 5.5

Foeam (GeV)
Yield Upper Limits
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Search for Higher Mass =* Upper Limit Calculation Technique

Upper Limits

=* Upper Limits

Total cross section upper limits for the =* states at:
1620, 1690 and 1820 MeV

L2 b NG
BLO el
B OB
g 0.6 ot
% H
204 e e | —e— 1820
P L L e 1690 ||
: : : o | —e— 1620
i i i i ‘
005535 4.0 45 5.0 5.5

Epeam (GeV)

Total Cross Section Upper Limits
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Search for Higher Mass =* Upper Limit Calculation Technique
Upper Limits

=* Upper Limits

Total cross section upper limits for the =* states at:
1620, 1690 and 1820 MeV

integrated over 3.5-5.4 GeV

CL =90%

¢
|

=-(1620): 0.78 nb
@ =7(1690): 0.97 nb
~(1820): 1.09 nb
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Search for Iso-Exotics

Iso-exotic photoproduction

@ no reliable model for photoproduction of these states

@ no reliable masses or widths as well
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Estimated Sensitivity
= Iso-Exotics

Search for Iso-Exotics
Z Iso-

Iso-exotic photoproduction

@ no reliable model for photoproduction of these states
@ no reliable masses or widths as well
@ qualitative search for narrow resonances

@ depending on the width of these states, the estimated total cross
section upper limit are 10-100 nb since statistics are comparable to
the search for =*~ data
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imated Sensitivity

Search for Iso-Exotics

Iso-exotic photoproduction

no reliable model for photoproduction of these states
no reliable masses or widths as well

qualitative search for narrow resonances

¢ & ¢ ¢

depending on the width of these states, the estimated total cross
section upper limit are 10-100 nb since statistics are comparable to
the search for =*~ data

9 only strong decays of the resonances were considered so that definite
strangeness could be identified

-
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timated Se
= Iso-Exotics
Y Iso-Exotics

Search for Iso-Exotics
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ed Sel
= Iso-Exotics
Y Iso-Exotics

Search for Iso-Exotics

Entries 269189
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timated Se
= Iso-Exotics
Y Iso-Exo

Search for Iso-Exotics

Entries 377437
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timated Sens
= Iso-Exotics
Y Iso-Exo

Search for Iso-Exotics

Entries 377437
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Estimated Sensitivity
= Exotics
Y Iso-Exotics

Search for Iso-Exotics

yp — X" Ktatat

Entries 4721852
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= Iso-Exotics
¥ Iso-Exotics

Search for Iso-Exotics
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= lso-Exotics
¥ Iso-Exotics

Search for Iso-Exotics

14000 Entries 3233266
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ated Sensitivity
Exotics
Iso-Exotics

Search for Iso-Exotics

F Enries 3233266
- Rt =
25000 — Yp — PTTKTaT
20000 [
15000 —
10000 |—
F peak at 1232 MeV
e identified as A™" resonance
n: cenratt R R B B (miSidentiﬁed piOﬂS)
o 0.5 1 15 2 25

MM(x'nx) (K' recalculated as ©) (GeV)
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Summary

Conclusions

Summary

@ higher mass Y*'s contribute to = production at higher CM energies

o
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Conclusions

Summary

@ higher mass Y*'s contribute to = production at higher CM energies

@ photoproduction total cross sections for the =*~ states above
1530 MeV are smaller than anticipated (no higher than 2 nb)
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Conclusions

Summary

@ higher mass Y*'s contribute to = production at higher CM energies

@ photoproduction total cross sections for the =*~ states above
1530 MeV are smaller than anticipated (no higher than 2 nb)

@ This is consistent with the “vector meson dominance” model of the
photon (see Fig. 17 on page 20 of dissertation) where the
production ratio means we expect 75 events for the =*~(1690) in
gl2 — we are only sensitive to about 250 events
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Conclusions

Summary

@ higher mass Y*'s contribute to = production at higher CM energies

@ photoproduction total cross sections for the =*~ states above
1530 MeV are smaller than anticipated (no higher than 2 nb)

@ This is consistent with the “vector meson dominance” model of the
photon (see Fig. 17 on page 20 of dissertation) where the
production ratio means we expect 75 events for the =*~(1690) in
gl2 — we are only sensitive to about 250 events

above comparison breaks down due to the difference in beams:
>~ beam vs. y beam
but it is the only type of measurement available
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Conclusions

Summary

@ higher mass Y*'s contribute to = production at higher CM energies

@ photoproduction total cross sections for the =*~ states above
1530 MeV are smaller than anticipated (no higher than 2 nb)

@ This is consistent with the “vector meson dominance” model of the
photon (see Fig. 17 on page 20 of dissertation) where the
production ratio means we expect 75 events for the =*~(1690) in
gl2 — we are only sensitive to about 250 events

above comparison breaks down due to the difference in beams:
>~ beam vs. y beam
but it is the only type of measurement available

@ no evidence for iso-exotic baryons of strangeness —1 or —2
(estimated sensitivity ~ 10-100 nb)
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Summary
Future Work

! Specific Issue
Conclusions

Possible Future Work

@ = and =* differential cross section measurement
(requires work on the simulation model used)

©

=0 differential and total cross section (neutral kaon channel)
@ Q~ photoproduction (never seen!)

@ mapping out accurate upper limits for the iso-exotics as functions of
mass and width

-
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Summary
Future Work
Specif

. plot
Conclusions ;

=(1690) ratio in kaon production

Xx10°
40 i
a)
@ Invariant mass of =~ m"
__sof using the ¥~ beam at
< CERN from Adamovich
= et al., 1997
~
S ok | @ this measured ratio
S equates to > 75
< =(1690) events in g12
5 data
© 1op @ only experimental evidence that
a factor of 10 more statistics
would be enough to observe the
=(1690)
0 S N PN IR PR | I I L<LA.’,5OO
14 15 16 1.7 1.8 1.6 165 1.7 175 -
UCLA Jefferdon Lab_
m(=7) (GeV/c?) AR R ——
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Conclusions

Keep this plot?

1820
1850

not in PDB

1680
1620
1530
1321

found in g12 proposal (a CLAS internal report)
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